Bài giảng Nhập môn trí tuệ nhân tạo - Nguyễn Quang Hoan

1.1 LỊCH SỬ HÌNH THÀNH VÀ PHÁT TRIỂN

Trong phần này chúng tôi nỗ lực giải thích tại sao chúng tôi coi trí tuệ nhân tạo là một bộ

môn đáng nghiên cứu nhất; và nỗ lực của chúng tôi nhằm giải thích trí tuệ nhân tạo là gì. Đây có

phải là bộ môn hấp dẫn khi nghiên cứu không.

Trí tuệ nhân tạo hay AI (Artificial Intelligence) là một trong những ngành tiên tiến nhất.

Nó chính thức được bắt đầu vào năm 1956, mặc dù việc này đã bắt đầu từ 5 năm trước. Cùng với

ngành di truyền học hiện đại, đây là môn học được nhiều nhà khoa học đánh giá: “là lĩnh vực tôi

thích nghiên cứu nhất trong số những môn tôi muốn theo đuổi”. Một sinh viên vật lý đã có lý khi

nói rằng: tất cả các ý tưởng hay đã được Galileo, Newton, Einstein tìm rồi; một số ý tưởng khác

lại mất rất nhiều năm nghiên cứu trước khi có vai trò thực tiễn. AI vẫn là vấn đề để trống từ thời

Einstein.

Qua hơn 2000 năm, các triết gia đã cố gắng để hiểu cách nhìn, học, nhớ và lập luận được

hình thành như thế nào. Sự kiện những chiếc máy tính có thể sử dụng được vào đầu những năm

50 của thế kỉ XX đã làm các nhà tri thức thay đổi hướng suy nghĩ. Rất nhiều người cho rằng:

“những trí tuệ siêu điện tử” mới này đã cho ta dự đoán được tiềm năng của trí tuệ. AI thực sự khó

hơn rất nhiều so với ban đầu mọi người nghĩ.

Hiện nay AI đã chuyển hướng sang nhiều lĩnh vực nhỏ, từ các lĩnh vực có mục đích chung

chung như nhận thức, lập luận, tư duy logic đến những công việc cụ thể như đánh cờ, cung cấp

định lý toán học, làm thơ và chuẩn đoán bệnh. Thường, các nhà khoa học trong các lĩnh vực khác

cũng nghiêng về trí tuệ nhân tạo. Trong lĩnh vực này họ thấy các phương tiện làm việc, vốn từ

vựng được hệ thống hoá, tự động hoá: các nhiệm vụ trí tuệ là công việc mà họ sẽ có thể cống hiến

cả đời. Đây thực sự là một ngành rất phổ biến.

1.1.1. Tư duy như con người: phương pháp nhận thức

Nếu muốn một chương trình máy tính có khả năng suy nghĩ như con người, chúng ta phải

tìm hiểu con người đã tư duy như thế nào? Có một số tiêu chí xác định như thế nào là suy nghĩ

kiểu con người. Chúng ta cần xem công việc bên trong của bộ óc con người. Có hai phương pháp

để thực hiện điều này: thứ nhất là thông qua tư duy bên trong - phải nắm bắt được suy nghĩ của

con người khi làm việc - thứ hai thông qua thí nghiệm tâm lý. Khi chúng ta đã có được đầy đủ lý

thuyết về tư duy thì chúng ta có thể chương trình hoá nó trên máy tính. Nếu đầu vào/ra của

chương trình và thời gian làm việc phù hợp với con người thì những chương trình tự động này có

thể hoạt động theo con người. Ví dụ, Newell và Simon đã phát triển phương pháp giải quyết vấn

đề GPS- General Problem Solver (Newell and Simon 1961). Đây là phương pháp đối lập với các4

nghiên cứu đương thời (như Wang (1960)) ông quan tâm đến việc có được những giải pháp đúng

đắn, không quan tâm đến việc con người phải làm như thế nào.

1.1.2. Các qui tắc tư duy

Triết gia Aristote là người đầu tiên hệ thống hoá “tư duy chính xác”. Phép tam đoạn luận của

ông đưa ra kết luận đúng nếu cả tiền đề chính và tiền đề thứ là đúng. Chẳng hạn: “nếu Sô-crát là

con người, mọi con người đều chết, như vậy Sô-crát sẽ chết”.

Môn tư duy logic phát triển vào cuối thế kỉ XIX đầu XX. Năm 1965 các chương trình cung

cấp cho chúng ta đủ những thông tin, chi tiết về một vấn đề trong tư duy logic và tìm ra phương

pháp giải. Nếu vẫn còn vấn đề chưa có cách giải thì chương trình sẽ không ngừng tìm kiếm cách

giải. Môn logic truyền thống trong AI là điều mong mỏi để có được một chương trình mô tả hệ

thống trí tuệ

pdf 171 trang yennguyen 6580
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Nhập môn trí tuệ nhân tạo - Nguyễn Quang Hoan", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Nhập môn trí tuệ nhân tạo - Nguyễn Quang Hoan

Bài giảng Nhập môn trí tuệ nhân tạo - Nguyễn Quang Hoan
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG 
 NHẬP MÔN 
TRÍ TUỆ NHÂN TẠO 
(Dùng cho sinh viên hệ đào tạo đại học từ xa) 
Lưu hành nội bộ 
HÀ NỘI - 2007 
HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG 
NHẬP MÔN 
TRÍ TUỆ NHÂN TẠO 
 Biên soạn : PGS.TS. NGUYỄN QUANG HOAN 
LỜI NÓI ĐẦU 
Trí tuệ nhân tạo (hay AI: Artificial Intelligence), là nỗ lực tìm hiểu những yếu tố trí tuệ. 
Lý do khác để nghiên cứu lĩnh vực này là cách để ta tự tìm hiểu bản thân chúng ta. Không giống 
triết học và tâm lý học, hai khoa học liên quan đến trí tuệ, còn AI cố gắng thiết lập các các yếu tố 
trí tuệ cũng như tìm biết về chúng. Lý do khác để nghiên cứu AI là để tạo ra các thực thể thông 
minh giúp ích cho chúng ta. AI có nhiều sản phẩm quan trọng và đáng lưu ý, thậm chí ngay từ lúc 
sản phẩm mới được hình thành. Mặc dù không dự báo được tương lai, nhưng rõ ràng máy tính 
điện tử với độ thông minh nhất định đã có ảnh hưởng lớn tới cuộc sống ngày nay và tương lai phát 
triển của văn minh nhân loại. 
Trong các trường đại học, cao đẳng, Trí tuệ nhân tạo đã trở thành một môn học chuyên 
ngành của sinh viên các ngành Công nghệ Thông tin. Để đáp ứng kịp thời cho đào tạo từ xa, Học 
viện Công nghệ Bưu chính Viễn thông biên soạn tài liệu này cho sinh viên, đặc biêt hệ Đào tạo từ 
xa học tập. Trong quá trình biên soạn, chúng tôi có tham khảo các tài liệu của Đại học Bách khoa 
Hà nội [1] giáo trình gần gũi về tính công nghệ với Học viện. Một số giáo trình khác của Đại học 
Quốc gia thành phố Hồ Chí Minh [], tài liệu trên mạng và các tài liệu nước ngoài bằng tiếng Anh 
[] cũng được tham khảo và giới thiệu để sinh viên đào tạo từ xa đọc thêm. 
Tài liệu này nhằm hướng dẫn và giới thiệu những kiến thức cơ bản, các khái niệm, định 
nghĩa tóm tắt. Một số thuật ngữ được chú giải bằng tiếng Anh để học viên đọc bằng tiếng Anh dễ 
dàng, tránh hiểu nhầm khi chuyển sang tiếng Việt. 
Tài liệu gồm các chương sau: 
- Chương 1 : Khoa học Trí tuệ nhân tạo: tổng quan 
- Chương 2 : Các phương pháp giải quyết vấn đề 
- Chương 3 : Biểu diễn tri thức và suy diễn 
- Chương 4 : Xử lý ngôn ngữ tự nhiên 
- Chương 5 : Các kỹ thuật trí tuệ nhân tạo hiện đại 
Còn nhiều vấn đề khác chưa đề cập được trong phạm vi tài liệu này. Đề nghị các bạn đọc 
tìm hiểu thêm sau khi đã có những kiến thức cơ bản này. 
Nhiều cố gắng để cập nhật kiến thức nhưng thời gian, điều kiện, khả năng có hạn nên tài 
liệu chắc chắn còn nhiều thiếu sót. Chúng tôi mong nhận được nhiều ý kiến đóng góp để tài liệu 
được hoàn thiện hơn cho các lần tái bản sau. 
 TÁC GIẢ 
 2 
 3
CHƯƠNG 1: KHOA HỌC TRÍ TUỆ NHÂN TẠO: TỔNG QUAN 
Học xong phần này sinh viên có thể nắm được: 
1. Ý nghĩa, mục đích môn học; lịch sử hình thành và phát triể. Các tiền đề cơ bản của Trí 
tuệ nhân tạo (TTNT) 
2. Các khái niệm cơ bản, định nghĩa của TTNT. 
3. Các lĩnh vực nghiên cứu và ứng dụng cơ bản. Những vấn đè chưa được giải quyết trong 
TTNT 
1.1 LỊCH SỬ HÌNH THÀNH VÀ PHÁT TRIỂN 
Trong phần này chúng tôi nỗ lực giải thích tại sao chúng tôi coi trí tuệ nhân tạo là một bộ 
môn đáng nghiên cứu nhất; và nỗ lực của chúng tôi nhằm giải thích trí tuệ nhân tạo là gì. Đây có 
phải là bộ môn hấp dẫn khi nghiên cứu không. 
Trí tuệ nhân tạo hay AI (Artificial Intelligence) là một trong những ngành tiên tiến nhất. 
Nó chính thức được bắt đầu vào năm 1956, mặc dù việc này đã bắt đầu từ 5 năm trước. Cùng với 
ngành di truyền học hiện đại, đây là môn học được nhiều nhà khoa học đánh giá: “là lĩnh vực tôi 
thích nghiên cứu nhất trong số những môn tôi muốn theo đuổi”. Một sinh viên vật lý đã có lý khi 
nói rằng: tất cả các ý tưởng hay đã được Galileo, Newton, Einstein tìm rồi; một số ý tưởng khác 
lại mất rất nhiều năm nghiên cứu trước khi có vai trò thực tiễn. AI vẫn là vấn đề để trống từ thời 
Einstein. 
Qua hơn 2000 năm, các triết gia đã cố gắng để hiểu cách nhìn, học, nhớ và lập luận được 
hình thành như thế nào. Sự kiện những chiếc máy tính có thể sử dụng được vào đầu những năm 
50 của thế kỉ XX đã làm các nhà tri thức thay đổi hướng suy nghĩ. Rất nhiều người cho rằng: 
“những trí tuệ siêu điện tử” mới này đã cho ta dự đoán được tiềm năng của trí tuệ. AI thực sự khó 
hơn rất nhiều so với ban đầu mọi người nghĩ. 
Hiện nay AI đã chuyển hướng sang nhiều lĩnh vực nhỏ, từ các lĩnh vực có mục đích chung 
chung như nhận thức, lập luận, tư duy logic đến những công việc cụ thể như đánh cờ, cung cấp 
định lý toán học, làm thơ và chuẩn đoán bệnh. Thường, các nhà khoa học trong các lĩnh vực khác 
cũng nghiêng về trí tuệ nhân tạo. Trong lĩnh vực này họ thấy các phương tiện làm việc, vốn từ 
vựng được hệ thống hoá, tự động hoá: các nhiệm vụ trí tuệ là công việc mà họ sẽ có thể cống hiến 
cả đời. Đây thực sự là một ngành rất phổ biến. 
1.1.1. Tư duy như con người: phương pháp nhận thức 
Nếu muốn một chương trình máy tính có khả năng suy nghĩ như con người, chúng ta phải 
tìm hiểu con người đã tư duy như thế nào? Có một số tiêu chí xác định như thế nào là suy nghĩ 
kiểu con người. Chúng ta cần xem công việc bên trong của bộ óc con người. Có hai phương pháp 
để thực hiện điều này: thứ nhất là thông qua tư duy bên trong - phải nắm bắt được suy nghĩ của 
con người khi làm việc - thứ hai thông qua thí nghiệm tâm lý. Khi chúng ta đã có được đầy đủ lý 
thuyết về tư duy thì chúng ta có thể chương trình hoá nó trên máy tính. Nếu đầu vào/ra của 
chương trình và thời gian làm việc phù hợp với con người thì những chương trình tự động này có 
thể hoạt động theo con người. Ví dụ, Newell và Simon đã phát triển phương pháp giải quyết vấn 
đề GPS- General Problem Solver (Newell and Simon 1961). Đây là phương pháp đối lập với các 
 4 
nghiên cứu đương thời (như Wang (1960)) ông quan tâm đến việc có được những giải pháp đúng 
đắn, không quan tâm đến việc con người phải làm như thế nào. 
1.1.2. Các qui tắc tư duy 
Triết gia Aristote là người đầu tiên hệ thống hoá “tư duy chính xác”. Phép tam đoạn luận của 
ông đưa ra kết luận đúng nếu cả tiền đề chính và tiền đề thứ là đúng. Chẳng hạn: “nếu Sô-crát là 
con người, mọi con người đều chết, như vậy Sô-crát sẽ chết”. 
 Môn tư duy logic phát triển vào cuối thế kỉ XIX đầu XX. Năm 1965 các chương trình cung 
cấp cho chúng ta đủ những thông tin, chi tiết về một vấn đề trong tư duy logic và tìm ra phương 
pháp giải. Nếu vẫn còn vấn đề chưa có cách giải thì chương trình sẽ không ngừng tìm kiếm cách 
giải. Môn logic truyền thống trong AI là điều mong mỏi để có được một chương trình mô tả hệ 
thống trí tuệ. 
1.1.3. Khởi nguồn của AI (1943 - 1956) 
Những công việc đầu tiên của AI được Warren McCulioch và Walter Pitts (1943) thực hiện. 
Họ đã nghiên cứu ba cơ sở lí thuyết: triết học cơ bản và chức năng của các nơ ron thần kinh; phân 
tích về các mệnh đề logic là của Russell và whitehead và cuối cùng là thuyết dự đoán của 
Turning. Họ đã đề ra mô hình nơ ron nhân tạo, trong đó mỗi nơ ron được đặc trưng bởi hai trạng 
thái “bật”, “tắt”. McCulloch và Pitts cũng đã phát hiện: mạng nơ ron có khả năng học. Donald 
Hebb (1949) sử dụng luật học đơn giản tượng trưng cho việc truyền thông tin giữa các giữa các nơ 
ron. 
Đầu những năm 1950, Claude Shannon (1950) và Alan Turning (1953) đã viết chương trình 
đánh cờ theo cách mà Von Newman sáng chế ra máy tính. Cùng lúc đó, hai sinh viên khoa toán 
trường đại học Princeton, Marvin Minsky và Dean Edmond đã xây dựng hệ thống máy tính nơ ron 
đầu tiên vào năm 1951 được gọi là SNARC. Nó sử dụng khoảng 3000 bóng điện tử chân không và 
thiết bị cơ khí tự động tính giá trị thặng dư từ chùm B-24 để mô phỏng mạng với 40 nơ ron. 
Nhóm thạc sĩ của Minsky nghi ngờ rằng liệu đây có được coi là một phần của toán học, nhưng 
Neuman một thành viên của nhóm đã cho biết rằng “nếu bây giờ nó không phải là một phần của 
toán học thì một ngày nào đó nó sẽ là như thế”. Thật mỉa mai, sau này Minsky lại chính là người 
chứng minh học thuyết này và đã bác bỏ nhiều hệ thống nghiên cứu về mạng nơ ron trong suốt 
những năm 1970. 
 Lòng say mê và tôn trọng lớn ngay từ rất sớm (1952-1969) 
 Năm 1958 McCarthy đã định nghĩa ngôn ngữ bậc cao Lisp, và trở thành ngôn ngữ lập 
trình cho AI. Lisp là ngôn ngữ lập trình lâu đời thứ hai mà hiện nay vẫn sử dụng. Với Lisp, 
McCarthy đã có phương tiện ông cần, nhưng để đáp ứng được yêu cầu và tài nguyên tính toán là 
một vấn đề quan trọng. Cũng vào năm 1958, McCarthy xuất bản bài báo “Các chương trình với 
cách nhìn nhận chung”. Trong bài báo này, ông bàn về chương trình tư vấn, một chương trình giả 
định được coi là hệ thống AI hoàn thiện đầu tiên. Giống học thuyết logic và cách chứng minh các 
định lý hình học, chương trình của McCarthy được thiết kế nhằm sử dụng kiến thức để nghiên cứu 
cách giải quyết vấn đề. Không như các chương trình khác, chương trình này là một bộ phận kiến 
thức của toàn bộ thế giới quan. Ông chỉ ra rằng làm thế nào để những điều rất đơn giản lại làm 
cho chương trình có thể khái quát được một kế hoạch đến sân bay và lên máy bay. Chương trình 
này cũng được thiết kế để nó có thể chấp nhận vài chân lý mới về quá trình thực hiện bình thường. 
Chính vì vậy, chương trình này có được những khả năng thực hiện trong các chương trình mới mà 
không cần lập trình lại. 
 5
Năm 1963, McCarthy đã có các nghiên cứu về sử dụng logic để xây dựng chương trình 
người tư vấ Chương trình này được phát triển do khám phá của Robinson về phương pháp cải 
cách. Những công việc đầu tiên tạo ra những hệ thống mới của McCulloch và Pitts làm cho chúng 
phát triển. Các phương pháp nghiên cứu của Hebb đã được Widrow ủng hộ (Widrow và Hoff, 
1960; Widrow, 1962). Họ đã đặt tên mang nơ ron là mạng của ông, và cũng được Frank 
Rosenblatt (1962) củng cố. Rosenblatt chứng minh rằng thuật toán mà ông nghiên cứu có thể 
thêm vào những khả năng của nhận thức phù hợp với bất cứ dữ liệu đầu vào nào. 
 Những nhà nghiên cứu AI cũng đã dự đoán về những thành công sau này. Herbert Simon đã 
phát biểu (1957): Không phải mục đích của tôi là làm các bạn ngạc nhiên, nhưng cách đơn giản 
nhất để có thể khái quát là hiện nay trên thế giới, máy móc có thể suy nghĩ, có thể học và sáng tạo 
được. Hơn nữa, khả năng của nó là làm việc với tiến độ cao- trong tương lai rõ ràng – cho đến khi 
vấn đề chúng ta có thể giải được, sẽ cùng tồn tại với tư duy của con người có thể áp dụng được. 
Năm 1958, ông dự đoán trong 10 năm nữa, một máy tính có thể vô địch trong môn cờ vua, và các 
định lý toán học mới sẽ được máy chứng minh. 
1.2. CÁC TIỀN ĐỀ CƠ BẢN CỦA TTNT 
Toàn cảnh về phương pháp giải quyết vấn đề hình thành trong thập kỉ đầu nghiên cứu AI là 
mục đích nghiên cứu nỗ lực liên kết các bước lập luận cơ bản với nhau để tìm ra phương pháp 
hoàn thiện. Các phương pháp này được coi là các phương pháp kém vì sử dụng thông tin kém về 
lĩnh vực. Đối với nhiều lĩnh vực phức tạp, thì các phương pháp thực hiện lại rất kém. Cách duy 
nhất quanh vấn đề là sử dụng kiến thức phù hợp hơn để có bước lặp rộng hơn và để giải quyết các 
trường hợp nảy sinh nhất định trong các lĩnh vực nhỏ chuyên môn. Chúng ta chắc sẽ nói rằng giải 
quyết các vấn đề khó thì hầu như phải biết trước đáp án. 
Chương trình DENDRAL (Buchanan, 1969) là một ví dụ sớm tiếp cận phương pháp này. 
Nó được phát triển tại Stanford, đây chính là nơi Ed Feigenbaum (một sinh viên chính qui của 
Herbert Simon). Bruce Buchanan (một triết gia chuyển sang làm nghiên cứu máy tính) và Joshua 
Lederberg (nhà nghiên cứu di truyền đoạt giải Nobel) đã hợp nhau lại để cùng suy luận, giải quyết 
vấn đề có cấu trúc phân tử từ những thông tin do máy đo quang phổ cung cấp. Dữ liệu đưa vào 
chương trình gồm các cấu trúc cơ bản của phân tử (Ví dụ C6H12NO2), và rất nhiều dải quang phổ 
đưa ra hàng loạt đoạn phân tử khác nhau khái quát chung khi nó cùng một lúc đưa ra các dòng 
điện tử. Ví dụ dải quang phổ chứa đựng một điểm nhọn tại m=15 tương ứng với một dải của đoạn 
methyl (CH3). 
Phiên bản sơ khai của chương trình khái quát được toàn bộ cấu trúc có thể bên trong bằng 
phân tử và sau đó phỏng đoán bằng cách quan sát mỗi dải quang phổ, so sánh nó với quang phổ 
thực tế. Như chúng ta nghĩ thì điều này trở nên nan giải đối với các phân tử có kích thước đáng 
kể. Các nhà nghiên cứu DENDRAL khuyên các nhà phân tích dược khoa và cho thấy rằng họ 
nghiên cứu bằng cách tìm kiếm các phần bên trên của điểm nhọn trong dải quang phổ, điều đó 
đưa ra gợi ý chung về các cấu trúc nhỏ bên trong phân tử. Ví dụ, qui luật sau đây được sử dụng để 
nhận ra một nhóm nhỏ xeton (C=0) 
Nếu có hai đỉnh x1, x2 như sau: 
(a) x1+x2 = M+28 (M là khối lượng của phân tử) 
(b) x1-28 là một đỉnh 
(c) x2-28 là một đỉnh 
(d) Có ít nhất một đỉnh x1 hoặc x2 là đỉnh cao. Sau đó có một nhóm nhỏ xeton. 
 6 
Khi nhận ra phân tử chứa một cấu trúc nhỏ đặc biệt, số lượng thành phần tham gia có thể bị 
giảm xuống nhanh chóng. Nhóm DENDRAL kết luận rằng hệ thống mới là rất mạnh bởi vì: toàn 
bộ kiến thức có liên quan đến giải quyết công việc đã được phác thảo sơ qua từ cấu trúc chung 
trong [thành phần quang phổ đoán trước] để có những cấu trúc đặc biệt 
Tầm quan trọng của DENDRAL là nó là hệ thống cảm nhận kiến thức thành công đầu tiên. 
Các chuyên gia của lĩnh vực này đi sâu từ số lượng lớn các qui luật có mục đích đặc biệt. Các hệ 
thống sau này cũng không kết hợp lại thành chủ đề chính của phương pháp chuyên gia của 
McCarthy - phần hoàn toàn tách biệt của kiến thức (trong cấu trúc của qui luật) và thành phần lập 
luận. 
Với bài học này, Feigebaum và các thành viên khác tại Stanford bắt đầu lập dự án chương 
trình Heuristic, để đầu tư mở rộng vào các phương pháp mới của hệ chuyên gia nhằm áp dụng vào 
các lĩnh vực khác nhau. Những nỗ lực chính sau đó là chuẩn đoán y học. Feigenbaum, Buchanan 
và Edward Shortlife đã phát triển hệ chuyên gia MYCIN để chẩn đoán bệnh nhiễm trùng máu. 
Với khoảng 450 luật, hệ chuyên gia MYCIN có thể thực hiện tốt hơn nhiều bác sĩ mới. Nó có hai 
sự khác biệt cơ bản với hệ chuyên gia DENDRAL. Thứ nhất: không giống như các luật 
DENDRAL, không một mẫu lý thuyết chung nào tồn tại mà có thể suy luận từ các luật của hệ 
MYCIN. Các luật phải có câu chất vấn của chuyên gia, người có nhiệm vụ tìm chúng từ kinh 
nghiệm. Thứ hai: các luật phản ánh mối liên quan không chắc chắn với kiến thức y học. MYCIN 
kết hợp với hệ vi phân của biến số được coi là các nhân tố phù hợp tốt (ở mọi lúc) với phương 
pháp mà các bác sĩ tiếp cận với các triệu chứng trong quá trình chuẩn đoán. 
Cách tiếp cận khác để chuẩn đoán y học cũng được nghiên cứu. Tại trường đại học Rutger, 
những máy tính trong ngành sinh hoá của Sual Amarel bắt đầu tham vọng nhằm cố gắng chuẩn 
đoán bệnh tật dựa trên kiến thức được biểu đạt rõ ràng của những chiếc máy phân tích quá trình 
bệnh tật. Trong khi đó, một số nhóm lớn hơn tại MIT và trung tâm y tế của Anh đang tiếp tục 
phương pháp chuẩn đoán và điều trị dựa trên học thuyết có tính khả thi và thực tế. Mục đích của 
họ là xây dựng các hệ thống có thể đưa ra các phương pháp chẩn đoán y học. Về y học, phương 
pháp Stanford sử dụng các qui luật do các bác sĩ cung cấp ngay từ đầu đã được chứng minh là phổ 
biến hơn. Nhưng hệ chuyên gia PROSPECTOR (Duda 1979) được công bố cho mọi người bằng 
cách giới thiệu thiết bị khoan thă ... ontrol Systems Magazine(10), pp. 31-34. 1990 
[26] đề tài (mã số 082-2000-TCT-R-ĐT-83) 
 166
MỤC LỤC 
LỜI NÓI ĐẦU .......................................................................................................................... 1 
CHƯƠNG 1: KHOA HỌC TRÍ TUỆ NHÂN TẠO: TỔNG QUAN.................................. 3 
1.1 LỊCH SỬ HÌNH THÀNH VÀ PHÁT TRIỂN .........................................................................................3 
1.1.1. Tư duy như con người: phương pháp nhận thức ..................................................................................3 
1.1.2. Các qui tắc tư duy.................................................................................................................................4 
1.1.3. Khởi nguồn của AI (1943 - 1956) ........................................................................................................4 
1.2. CÁC TIỀN ĐỀ CƠ BẢN CỦA TTNT......................................................................................................5 
1.3. CÁC KHÁI NIỆM CƠ BẢN.....................................................................................................................6 
1.3.1. Trí tuệ nhân tạo(AI) là gì?....................................................................................................................6 
1.3.2. Tri thức là gì? ......................................................................................................................................8 
1.3.3. Cơ sở tri thức (Knowledge Base: KB) .................................................................................................8 
1.3.4. Hệ cơ sở tri thức ...................................................................................................................................8 
1.4 CÁC LĨNH VỰC NGHIÊN CỨU VÀ ỨNG DỤNG CƠ BẢN...............................................................9 
1.4.1 Lý thuyết giải bài toán và suy diễn thông minh ....................................................................................9 
1.4.2 Lý thuyết tìm kiếm may rủi...................................................................................................................9 
1.4.3 Các ngôn ngữ về Trí Tuệ Nhân Tạo......................................................................................................9 
1.4.4 Lý thuyết thể hiện tri thức và hệ chuyên gia .........................................................................................9 
1.4.5 Lý thuyết nhận dạng và xử lý tiếng nói.................................................................................................9 
1.4.6 Người máy..........................................................................................................................................10 
1.4.7 Tâm lý học xử lý thông tin ..................................................................................................................10 
1.5 NHỮNG VẤN ĐỀ CHƯA ĐƯỢC GIẢI QUYẾT TRONG TRÍ TUỆ NHÂN TẠO ..........................12 
TỔNG KẾT .....................................................................................................................................................12 
BÀI TẬP VÀ CÂU HỎI .................................................................................................................................13 
CHƯƠNG 2: CÁC PHƯƠNG PHÁP GIẢI QUYẾT VẤN ĐỀ ......................................... 15 
2.1. GIẢI QUYẾT VẤN ĐỀ KHOA HỌC VÀ TRÍ TUỆ NHÂN TẠO......................................................15 
2.2. GIẢI QUYẾT VẤN ĐỀ CỦA CON NGƯỜI.........................................................................................15 
2.3. PHÂN LOẠI VẤN ĐỀ. CÁC ĐẶC TRƯNG CƠ BẢN CỦA VẤN ĐỀ ...............................................16 
2.4 CÁC PHƯƠNG PHÁP BIỂU DIỄN VÂN ĐỀ .......................................................................................21 
2.5. CÁC PHƯƠNG PHÁP GIẢI QUYẾT VẤN ĐỀ CƠ BẢN...................................................................22 
2.6. GIẢI QUYẾT VẤN ĐỀ VÀ CÁC KĨ THUẬT HEURISTIC...............................................................28 
2.7. CÁC PHƯƠNG PHÁP GIẢI QUYẾT VẤN ĐỀ KHÁC .....................................................................35 
BÀI TẬP ..........................................................................................................................................................41 
CHƯƠNG 3: BIỂU DIỄN TRI THỨC VÀ SUY DIỄN .................................................... 42 
3.1 NHẬP MÔN ..............................................................................................................................................42 
3.2 TRI THỨC VÀ DỮ LIỆU ........................................................................................................................42 
3.3 PHÂN LOẠI TRI THỨC .........................................................................................................................43 
3.5. CÁC PHƯƠNG PHÁP BIỂU DIỄN TRI THỨC..................................................................................44 
3.5.1 Biểu diễn tri thức bằng Logic mênh đề ...............................................................................................44 
3.5.2 Dạng chuẩn tắc...................................................................................................................................47 
3.5.3. Các câu Horn:.....................................................................................................................................48 
 167
3.5.4. Luật suy diễn...................................................................................................................................... 49 
3.5.5. Luật phân giải, chứng minh bác bỏ bằng luật phân giải.................................................................... 51 
3.5.6 Biểu diễn tri thức bằng Logic vị từ ..................................................................................................... 54 
3.6 CƠ CHẾ SUY DIỄN................................................................................................................................ 76 
3.6.1 Khái niêm về suy diễn và lập luận ...................................................................................................... 76 
3.6.2 Lập luận tiến ....................................................................................................................................... 76 
3.6.3 Lập luận lùi ......................................................................................................................................... 78 
3.6.4 Lập luận tương tự như tìm kiếm trên đồ thì và/hoặc........................................................................... 79 
3.6.6 Thủ tục For_chain ............................................................................................................................... 80 
3.7 CÁC HỆ CƠ SỞ TRI THỨC VÀ CÁC HỆ CHUYÊN GIA................................................................. 82 
3.7.1 Hệ hỗ trợ ra quyết định và hệ thống thông tin.................................................................................... 82 
3.7.2. Các thành phần của một hệ ra hỗ trợ quyết định................................................................................ 83 
3.7.3 Hệ hỗ chuyên gia HỆ MYCIN............................................................................................................ 84 
3.7.3 Các hệ thống dự luật .......................................................................................................................... 85 
3.8 CÁC NGÔN NGỮ LẬP TRÌNH THÔNG MINH.................................................................................. 87 
CÂU HỎI VÀ BÀI TẬP................................................................................................................................. 89 
CHƯƠNG 4: XỬ LÝ NGÔN NGỮ TỰ NHIÊN..................................................................91 
4.1 XỬ LÝ NGÔN NGỮ TỰ NHIÊN VÀ TRÍ TUỆ NHÂN TẠO.............................................................. 91 
4.1.1 Sự tiến hóa của ngôn ngữ.................................................................................................................... 91 
4.1.2 Cơ sở của ngôn ngữ ............................................................................................................................ 91 
4.1.3 Khả năng phát sinh.............................................................................................................................. 92 
4.2 XỬ LÝ VÀ HIỂU VĂN BẢN................................................................................................................... 95 
4.2.1 Truy nhập cơ sở dữ liệu ...................................................................................................................... 95 
4.2.2 Thu thập thông tin............................................................................................................................... 96 
4.2.3 Phân loại văn bản................................................................................................................................ 96 
4.2.4 Lấy dữ liệu vào văn bản...................................................................................................................... 97 
4.3 CÁC HỆ THỐNG DỊCH TỰ ĐỘNG...................................................................................................... 98 
4.4 XỬ LÝ VÀ HIỂU TIẾNG NÓI ............................................................................................................... 99 
4.4.1. Tổng quan về tiếng nói ...................................................................................................................... 99 
4.4.2. Phân tích tham số tiếng nói .............................................................................................................. 103 
4.4.3. Các phương pháp trích chọn tham số đặc trưng của tín hiệu tiếng nói ............................................ 106 
4.5 CÁC HỆ THỐNG HỘI THOẠI ............................................................................................................ 113 
4.6 TỪ ĐIỂN ĐIỆN TỬ................................................................................................................................ 113 
CÂU HỎI VÀ BÀI TẬP............................................................................................................................... 115 
5.1. NHẬP MÔN ........................................................................................................................................... 116 
5.2. MẠNG NƠ RON NHÂN TAO ............................................................................................................. 116 
5.2.1 Quá trình phát triển ........................................................................................................................... 116 
5.2.2 Cơ sở của mạng nơron nhân tạo và một số khái niệm....................................................................... 117 
5.2.3. Các cấu trúc mạng điển hình............................................................................................................ 121 
5.2.4 Khả năng ứng dung của mạng nơ ron ............................................................................................... 128 
5.3. LOGIC MỜ ............................................................................................................................................ 131 
5.3.1. Các khái niệm cơ bản....................................................................................................................... 131 
5.3.2. Các phép toán trên tập mờ ............................................................................................................... 133 
 168
5.3.3. Biến ngôn ngữ ..................................................................................................................................135 
5.3.4 Các khả năng ứng dụng của Logic mờ ..............................................................................................135 
5.3. GIẢI THUẬT DI TRUYỀN..................................................................................................................137 
5.3.1. Giải thuật di truyền..........................................................................................................................137 
5.3.2. Cơ sở toán học của giải thuật di truyền ............................................................................................139 
5.3.3. Thuộc tính của sơ đồ ........................................................................................................................139 
5.3.4. Tác động của các toán tử di truyền trên một sơ đồ...........................................................................140 
5.3.5. Đặc điểm hội tụ của giải thuật di truyền..........................................................................................142 
5.4. CÁC HỆ THỐNG THÔNG MINH LAI ..............................................................................................145 
5.4.1. Hệ thống Nơ ron -Mơ.......................................................................................................................145 
5.4.2. Hệ thống Nơ ron – Giải thuật di truyền............................................................................................145 
5.4.3. Các hệ thống lai khác .......................................................................................................................145 
5.5. CÁC AGENT THÔNG MINH..............................................................................................................145 
5.5.1. Giới thiệu .........................................................................................................................................145 
5.5.2. Hoạt động của các Agent .................................................................................................................146 
5.5.3. Cấu trúc của các agent thông minh ..................................................................................................151 
5.5.4. Môi trường (Environments) .............................................................................................................158 
TÓM TẮT......................................................................................................................................................161 
CÂU HỎI VÀ BÀI TẬP ...............................................................................................................................162 
GIẢI THÍCH TỪ VÀ THUẬT NGỮ VIẾT TẮT ............................................................. 163 
TÀI LIỆU THAM KHẢO ................................................................................................... 164 
MỤC LỤC............................................................................................................................. 166 
NHẬP MÔN 
TRÍ TUỆ NHÂN TẠO 
Mã số: 412TTN340 
Chịu trách nhiệm bản thảo 
TRUNG TÂM ÐÀO TẠO BƯU CHÍNH VIỄN THÔNG 1 

File đính kèm:

  • pdfbai_giang_nhap_mon_tri_tue_nhan_tao_nguyen_quang_hoan.pdf