Bài giảng Strength of materials - Chapter 6: Torsion - Trần Minh Tú

6.1. Introduction

6.2. Torsional Loads on Circular Shafts

6.3. Strength Condition and stiffness condition

6.4. Statically Indeterminate Problem

6.5. Strain Energy

6.6. Examples

Home’s works

pdf 28 trang yennguyen 7160
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Strength of materials - Chapter 6: Torsion - Trần Minh Tú", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Strength of materials - Chapter 6: Torsion - Trần Minh Tú

Bài giảng Strength of materials - Chapter 6: Torsion - Trần Minh Tú
STRENGTH OF MATERIALS
TRAN MINH TU - University of Civil Engineering,
Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam
1/10/2013 1
6
CHAPTER
1/10/2013
TORSION
Contents
6.1. Introduction
6.2. Torsional Loads on Circular Shafts
6.3. Strength Condition and stiffness condition
6.4. Statically Indeterminate Problem
6.5. Strain Energy
6.6. Examples
Home’s works
1/10/2013 3
6.1. Introduction
1/10/2013 4
1/10/2013 5
6.1. Introduction
1/10/2013 6
• Torsional Loads on Circular Shafts: the torsional moment or couple
6.1. Introduction
Torsion members – the slender members subjected to torsional
loading, that is loaded by couple that produce twisting of the member
about its axis
Examples – A torsional moment (torque) is applied to the lug-wrench
shaft, the shaft transmits the torque to the generator, the drive shaft of
an automobile...
y
x
z
F
A
B C Q1
Q2
1
T
1
t 2
T
t
2
1/10/2013 7
6.1. Introduction
 Internal torsional moment diagram
• Using method of section
zM
> 0
y
z
x
• Sign convention of Mz
- Positive: clockwise
- Negative: counterclockwise
0zM  Mz =
z
y
x
1/10/2013 8
6.2.1. Simplifying assumptions
6.2. Torsion of Circular Shafts
1/10/2013 9
6.2. Torsion of Circular Shafts
• Consider the portion of the shaft
shown in the figure
• CD – before deformation
• CD’ – after deformation
- From the geometry 'DD d dz  
=> The Shear strain:
d
dz
 
d
G G
dz
  
- Following Hooke’s law:
6.2.2. Compatibility
- d – the angle of twist
=> In the cross-section, only shear stress exists
1/10/2013 10
2
z p
A A
d d
M dA G dA G I
dz dz
 
z
p
Md
dz GI
 
z
p
M
I
  
 – radial position
Ip – polar moment of inertia
Mz – internal torsional moment
6.2. Torsion of Circular Shafts
6.2.3. Equilibrium
6.2.3. Torsion formulas
– Shearing stress
 – the rate of twist
1/10/2013 11
6.2. Torsion of Circular Shafts
max
z z
p p
M M
R
I W
 
- Maximum shearing stress
– Angle of twist
From 6.2.3:
 
0
A L
z z
AB
p pB
M dz M dz
rad
GI GI
L

A B
O
a b
c
- Wp - Section modulus of torsion
1/10/2013 12
z
AB
p
M L
GI
 z
p
M
const
GI
6.2. Torsion of Circular Shafts
If the shaft is subjected to several different torques or cross-sectional
area, or shear modulus changes abruptly from one region of the shaft to
the next.
– Multiply torques
constz
p i
M
GI
1
n
z
AB i
i p i
M
l
GI

GIp – stiffness of torsional shaft
1/10/2013 13
6.2. Torsion of Circular Shafts
1/10/2013 14
6.3. Strength Condition – Stiffness condition
 ax
pW
z
m
M
  
  0
n

 - Determine experimentally 0
 
 
2

 - Third strength hypothesis 3
 
 
3

 - Fourth strength hypothesis 4
 Strength condition:
 Stiffness condition:
  ax
ax
 /zm
p m
M
rad m
GI
 
1/10/2013 15
6.3. Strength Condition – Stiffness condition
 Three main problems:
 max 30.2D
zM  For a circular shaft:  ax 4 0.1
z
m
M
GD
  
1. Investigating the strength condition, (stiffness condition) 
 max 3 ???0.2D
zM  
2. Determine the diameter of circular cross-section
 
3D
0.2
zM

3. Determine the maximum torque   3M 0.2z D 
1/10/2013 16
• Assume that the reactions at the fixed
ends MA, MD are shown in the figure.
• Equilibrium: MA + MD = M (1)
• Compatibility condition:
 AD = 0 (2)
d
a 2a
D
M MA D
A
M
B2
d
D
M DM
z
z
CD
2AB BDz z
AD AB BD AB BD
p p
M a M a
GI GI
BD
z DM M 
AB
z DM M M 
4 4
2
0
0,10,1 2
D D
AD
M M a M a
G dG d
1 32
; 
33 33
D AM M M M 
Mz
M/33
32M/33
6.4. Statically Indeterminate Problem
1/10/2013 17
J
T
xy
 
 dV
GJ
T
dV
G
U
xy
2
222
22
 
• For a shaft subjected to a torsional
load,
• Setting dV = dA dx,
L
L
A
L
A
dx
GJ
T
dxdA
GJ
T
dxdA
GJ
T
U
0
2
0
2
2
2
0
2
22
2
22
• In the case of a uniform shaft,
GJ
LT
U
2
2
6.5. Strain Energy
1/10/2013 18
6.6. Example Problem 1
• A Circular shaft made from two
segments, each having diameter
of D and 2D. The Shaft is
subjected to the torques shown
in the figure.
1. Draw the internal torsional
moment diagram
2. Determine the maximum
shearing stress
3. Determine the angle of twist of
the end D with respect to B
With M=5kNm; a=1m;
D=10cm; G=8.103 kN/cm2
2a
B
a
C D
D
M 3M
2
D
1/10/2013 19
1. Internal torsional moment 
diagram
Segment CD 
Segment BC
2a
B
a
C D
D
M 3M
2
D
Mz
kNm
15
10
 10 z a
3 15CDzM M kNm 
2 10BCzM M kNm 
 20 2 z a
Mz
CD
3M
z1
3MM
z2 a
Mz
BC
6.6. Example Problem 1
1/10/2013 20
6.6. Example Problem 1
2. Maximum shearing stress
3. Angle of twist of end D
2a
B
a
C D
D
M 3M
2
D
Mz
kNm
15
10
2
max 2
3 3
15 10
7,5( / )
0,2 0,2 10CD
CD
zM kN cm
D

2
max 2
3 3
10 10
0,625( / )
0,2 200,2 2
BC
BC
zM kN cm
D

D BC CD 
2CD BCz z
D CD BC
p p
M a M a
GI GI
2 2 2 2
3 4 3 4
15 10 10 10 10 2 10
0,02( )
8 10 0,1 10 8 10 0,1 20
D rad
2
max 7,5( / )kN cm 
1/10/2013 21
6.6. Example Problem 2
1/10/2013 22
6.6. Example Problem 2
1/10/2013 23
6.6. Example Problem 2
1/10/2013 24
Homework
1/10/2013 25
Homework
1/10/2013 26
Homeworks
1/10/2013 27
THANK YOU FOR 
ATTENTION !
1/10/2013 28

File đính kèm:

  • pdfbai_giang_strength_of_materials_chapter_6_torsion_tran_minh.pdf