Bài giảng Strength of materials - Chapter 5: Geometric Properties of an Area - Trần Minh Tú

Contents

5.1. Introduction

5.2. First moment of area

5.3. Moment of inertia for an area

5.4. Moment of inertia for some simple areas

5.5. Parallel - axis theorem

5.6. Examples

pdf 21 trang yennguyen 8260
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Strength of materials - Chapter 5: Geometric Properties of an Area - Trần Minh Tú", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Strength of materials - Chapter 5: Geometric Properties of an Area - Trần Minh Tú

Bài giảng Strength of materials - Chapter 5: Geometric Properties of an Area - Trần Minh Tú
STRENGTH OF MATERIALS
TRAN MINH TU - University of Civil Engineering,
Giai Phong Str. 55, Hai Ba Trung Dist. Hanoi, Vietnam
1/10/2013 1
5
CHAPTER
1/10/2013
Geometric Properties of an Area
Contents
5.1. Introduction
5.2. First moment of area
5.3. Moment of inertia for an area
5.4. Moment of inertia for some simple areas
5.5. Parallel - axis theorem
5.6. Examples
1/10/2013 3
5.1. Introduction
1/10/2013 4
Dimension, shape?
1/10/2013 5
5.2. First Moment of Area
5.2.1. Definition
( )
x
A
S ydA 
( )
y
A
S xdA 
• Centroidal axes: are axes, which first moment of a plane A about them
is zero
• The first moment of a plane A about
the x- and y-axes are defined as
• Value: positive, negative or zero
• Dimension: [L3]; Unit: m3, cm3,...
5.2.2. The centroid of an area
• The centroid C of the area is defined as the point in the xy-plane that
has the coordinates
1/10/2013 6
y
C
S
x
A
 xC
S
y
A
xC
yC C
5.2. First Moment of Area
• If the origin of the xy-coordinate system
is the centroid of the area then Sx=Sy=0
• Whenever the area has an axis of
symmetry, the centroid of the area will lie
on that axis
1
n
i
x x
i
S S
 
1
n
i
y y
i
S S
 
• If the area can be subdivided in to simple geometric shapes
(rectangles, circles, etc., then
1/10/2013 7
5.2.3. The centroid of composite area
5.2. First Moment of Area
1
1
n
Ci i
y i
C n
i
i
x A
S
x
A
A


1
1
n
Ci i
x i
C n
i
i
y A
S
y
A
A


x
y
C1
C2
C3
xC1
yC1
1/10/2013 8
5.3. Moment of Inertia for an Area
2
( )
x
A
I y dA 
2
( )
y
A
I x dA 
5.3.1. Moment of inertia
5.3.2. Polar moment of inertia
2
( )
p x y
A
I dA I I 
5.3.3. Product of inertia
( )
xy
A
I xydA 
• The value of moment of inertia and polar
moment of inertia always positive, but the
product of inertia can be positive, negative,
or zero
• Dimension: [L4]; Unit: m4, cm4,...
1/10/2013 9
5.3. Moment of Inertia for an Area
- The product of inertia Ixy for an area will be zero if either the x or the y
axis is an axis of symmetry for the area
- The area with hole, then the hole’s
area is given by minus sign.
- The composite areas:
1
n
i
x x
i
I I
 
1
n
i
y y
i
I I
 
1
n
i
x x
i
S S
 
1
n
i
y y
i
S S
 
1/10/2013
10
5.4. Moment of Inertia for some simple areas
• Rectangular
• Circle
• Triangular
3
12
x
bh
I 
3
12
y
hb
I 
4 4
40,1
2 32
p
R D
I D
 
4 4
40,05
4 64
x y
R D
I I D
 
3
12
x
bh
I 
h
b
x
y
D
x
y
b
h
x
1/10/2013 11
5.5. Paralell-axis Theorem
• In the xy coordinates, an area
has geometric properties: Sx, Sy,
Ix, Iy, Ixy.
• In the uv coordinates: O'u//Ox,
O'v//Oy và:
• Geometric properties of an area
in the coordinates O'uv are:
u x b v y a 
.u xS S a A 
.v yS S b A 
22u x xI I aS a A 
22v y yI I bS b A 
uv xy y xI I aS bS abA 
1/10/2013 12
5.5. Paralell-axis Theorem
If O go through centroid C, then:
C C
2
u xI I a A 
2
v yI I b A 
uv xyI I abA 
. Radius of gyration
The radius of gyration of an area about the x and y axes, and the point
O are defined as
; 
yx
x y
II
r r
A A
1/10/2013 13
5.5. Paralell-axis Theorem
1/10/2013 14
5.5. Paralell-axis Theorem
1/10/2013 15
Problem 5.6.1. An area with the shape
and the dimension as shown in the
figure. Determine the principal moment
of inertia for area .
Solution Choosing the primary
coordinates x0y0 as shows in the figure.
Divide the composite area to 2 simple
areas 1 2
1
2
x0
y0
1. Determine the centroid:
- xC=0 (y0 – axis of symmetry)
Example 5.1
1/10/2013 16
1
2
x
0
y0- Draw the principal coordinates Cxy
- The Principal moment of inertia for an area:
Example 5.1
1/10/2013 17
Problem 5.2.
Example 5.2
1/10/2013 18
Example 5.2
1/10/2013 19
Example 5.3
1/10/2013 20
Example 5.3
THANK YOU FOR 
ATTENTION !
1/10/2013 21

File đính kèm:

  • pdfbai_giang_strength_of_materials_chapter_5_geometric_properti.pdf