Thiết kế và lắp đặt hệ thống đo dao dộng rung trong hầm gió
TÓM TẮT:
Bài báo trình bày các bước thiết kế và
lắp đặt bộ mô hình đo dao động rung trong
hầm gió diện tích 1m x 1m. Việc phân tích lý
thuyết về kết cấu lò xo trong mô hình này
giúp ta có thể tự thiết kế được một hệ thống
phù hợp với diện tích hầm gió, tốc độ gió
cũng như là mô hình cánh khảo sát để thu
được kết quả như mong muốn.
Hệ thống này giúp ta quan sát được sự
dao động của cánh khảo sát bằng mắt
thường, nhưng để biết được chính xác cánh
đã dao động lên xuống như thế nào, góc
xoay cánh ra sao, ta cần đến sự giúp đỡ của
bộ cảm biến siêu âm Sensick UM30-21-118
dùng để đo khoảng cách, sẽ được trình bày
cụ thể hơn trong phần nội dung.
Đồng thời bài báo cũng trình bày cách
làm một mô hình cánh đơn giản nhưng bền,
đẹp với biên dạng cánh NACA 0015 – là mô
hình cánh sẽ được khảo sát dao động trong
mô hình trên.Các hiện tượng khí động gây
ảnh hưởng đến sự dao động của cánh cũng
được nhắc tới và khắc phục trong phần thiết
kế cánh.
Cuối cùng là xử lý các số liệu sau khi đo
được để thấy sự tương đồng giữa thực
nghiệm và các lý thuyết của hàng không
động lực học.
Tóm tắt nội dung tài liệu: Thiết kế và lắp đặt hệ thống đo dao dộng rung trong hầm gió
SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K7- 2015 Trang 188 Thiết kế và lắp đặt hệ thống đo dao dộng rung trong hầm gió Trần Tiến Anh Hoàng Ngọc Lĩnh Nam Trường Đại học Bách Khoa, ĐHQG-HCM TÓM TẮT: Bài báo trình bày các bước thiết kế và lắp đặt bộ mô hình đo dao động rung trong hầm gió diện tích 1m x 1m. Việc phân tích lý thuyết về kết cấu lò xo trong mô hình này giúp ta có thể tự thiết kế được một hệ thống phù hợp với diện tích hầm gió, tốc độ gió cũng như là mô hình cánh khảo sát để thu được kết quả như mong muốn. Hệ thống này giúp ta quan sát được sự dao động của cánh khảo sát bằng mắt thường, nhưng để biết được chính xác cánh đã dao động lên xuống như thế nào, góc xoay cánh ra sao, ta cần đến sự giúp đỡ của bộ cảm biến siêu âm Sensick UM30-21-118 dùng để đo khoảng cách, sẽ được trình bày cụ thể hơn trong phần nội dung. Đồng thời bài báo cũng trình bày cách làm một mô hình cánh đơn giản nhưng bền, đẹp với biên dạng cánh NACA 0015 – là mô hình cánh sẽ được khảo sát dao động trong mô hình trên.Các hiện tượng khí động gây ảnh hưởng đến sự dao động của cánh cũng được nhắc tới và khắc phục trong phần thiết kế cánh. Cuối cùng là xử lý các số liệu sau khi đo được để thấy sự tương đồng giữa thực nghiệm và các lý thuyết của hàng không động lực học. Từ khóa : hầm gió, đầu cảm biến siêu âm, bộ khuếch đại cảm biến siêu âm, thiết bị đo khoảng cách, khí đàn hồi, dao động của cánh. REFERENCES [1]. Wright, J. R. & Cooper, J. E. (2007). Introduction to aircraft aeroelasticity and loads. England, West Sussex: John Wiley & Sons Ltd. [2]. Hodges, D. H. & Pierce, G. A. (2011). Introduction to structural dynamics and aeroelasticity (2nd edition). New York, NY: Cambridge University Press. [3]. Dowell, E. H. (2004). A modern course in aeroelasticity. New York, NY: Kluwer Academic Publishers. [4]. Buthaud, L. (1998). Cours d’aeroelasticité. France, Poitiers: ENSMA. [5]. Shubov, M. A. (2006). Flutter phenomenon in aeroelasticity and its mathematical analysis. Journal of Aerospace Engineering. [6]. Chen, S. S. (1990). Flow-induced vibration of circular cylindrical structures. Hemisphere. [7]. Blevins, R. D. & Reinhold, V. N. (1990). Flow-induced vibration (2nd edition). Malabar, FL: Krieger Pub Co. [8]. Obayashi, S. (2009). Multidisciplinary design optimization of aircraft wing plan form on evolutionary algorithms. IEEE International Conference on Systems Man and Cybernetics 4, 3148-3153. TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K7- 2015 Trang 189 Toward wave-body interaction roblems using CIP method: A demonstrating 2 phase problem Tran Tien Anh Bui Quan Hung Ho Chi Minh city University of Technology, VNU-HCM (Manuscript Received on July 08th, 2015, Manuscript Revised September 23rd, 2015) ABSTRACT: CIP (constrained interpolation profile) is one of the CFD (computational fluid dynamics) methods developed by Japanese professor Takashi Yabe. It is used to simulate 3 phase problems including air on the surface, liquid and structure in solid form. To check the validity of CIP theory, experiments with different problems have been implemented and obtained very positive results. This proves the correctness of the CIP method. Based on the need of simulation of wave structure interaction (water wave with float of seaplanes, wing in ground effect crafts, piers, drilling, casing ships...), this paper applies the theory of CIP method to find the answer to the problem of 2D simulation via a obstacle. Objectives to do are understanding the physics, finding out the differential equations describing the phenomenon, then proceeding discrete, setting up algorithms and finding out solution of the equations. This paper uses Matlab software to write programs and displays the results. Key words: numerical algorithm, constrained interpolation profile, free surface problem, fluid structure interaction, multiphase flows, governing equations. 1. INTRODUCTION 1.1.Objectives It is very important to know interaction of water waves on structures (body and float of seaplanes, flying boats, piers, drilling, casing ships...). The main objective of this paper is to establish a numerical prediction way for how water waves impact to a solid body. Purpose of this paper includes constructing algorithms and computational simulation modules, calculating the fluid forces acting on the structure (lift, drag, torque) and processing and displaying calculated results. Figure 1. Two phases flow (initial frame). 1.2. Missions SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K7- 2015 Trang 190 CIP is a CFD method developed by a Japanese professor [1]. CIP is used to simulate 3- phase environments consisting of air over the surface, liquid and a structure. The problem can be understood simply as follows: - Using equations to describe the movement of water waves. - Discretizing mathematical equations to establish algorithms programmed on the computer to find the answer. - Using the programming language to calculate an explanation of the equations. - Using graphics software to display the results of the problem found in graphs image. Software used in this paper is Matlab. 2. GOVERNING EQUATIONS [1] From the basic conservation equations: 2 up p iu Cit x xi i (1) Where t is the time variable; xi (i =1,2) are the coordinates of a Cartesian coordinate system; ρ is the mass density; ui (i=1,2) are the velocity components; fi (i=1,2) are due to the gravityorce. 2 1 / 3p Sij ij ij ij (2) where: σij is the total stress p is the pressure; μ is the dynamic viscosity coefficient; δij is the Kronecker delta function; 1 2 uu jiSij x xj i (3) Kronecker delta function: 0 if i j 1 if i = jij C is sound speed. In order to identify which part is the air, the water or the solid body, density functions φm (m=1, 2, 3) is introduced: 1, ,, , 0, otherwise x y mx y tm where Ωm : domain occupied by the liquid, gas and solid phase, respectively. These functions satisfy: 0m muit xi (4) Figure 2. Density function ϕm (m=1,2,3) for multiphase problems with 0≤ ϕm ≤ 1 and ϕ1 + ϕ2 + ϕ3 = 1 in the computational cells. 3. CIP METHOD 3.1. Principle of CIP Method [2] CIP method has some advantages over other methods with respect to the treatment of advection terms. In this section, the principle of CIP method is explained. Figure 3 shows the principle of CIP method. Here, a one- dimensional advection equation is used to simplify the explanation of CIP method. As TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K7- 2015 Trang 191 mentioned in the previous section, a one- dimensional advection equation is described as below, 0 f f u t x (5) The approximate solution of the above equation is given as: , ,f x t t f x u t ti i Where xi is the coordinates of calculation grid. The above equation indicates that a specific profile of f at time t + t is obtained by shifting the profile at time t with a distance u∆t as shown in Figure 3(a). In the numerical simulation, however, only the values at grid points can be obtained, as shown in Figure 3(b). If we eliminate the dashed line shown in Figure 3 (a), it is difficult to imagine the original profile and is naturally to retrieve the original profile depicted by solid line in (c). This process is called as the first order upwind scheme [3]. On the other hand, the use of quadratic interpolation, which is called as Lax-Wendroff scheme [4] or Leith scheme [5], suffers from overshooting. Figure 3. The principle of CIP method: (a) solid line is initial profile and dashed line is an exact solution after advection, whose solution (b) at discretized points, (c) when (b) is linearly interpolated, and (d) In CIP [6] In CIP method, a spatial profile within each cell is interpolated by a cubic polynomial. Differentiating equation (5) with a spatial variable x gives: g g u u g t x x (6) By this equation the time evolution of f and g can be traced on the basis of Equation (5). If g propagates in the way shown by the arrows in Figure 3(d), the profile looks smoother that is more precise. It is not difficult to imagine that by this treatment, the solution becomes much closer to the original profile. If two values of f and g are given at two grid points, the profile between the points can be described by a cubic polynomial: 3 2F x ax bx cx d The profile at n+1 step can be obtained by shifting the profile with u∆t, 1nf F x u t 1 F x u tng x (7) 3.2. Separation of Equations The governing equations of the fluid and the density function is: 0 0 2 1 1 0 30 00 2 0 0 ui xi pu u S S fj j ij ij kk ju x xi j ip pt xi uim m C xi (8) This equation is separated into three parts Advection phase: SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K7- 2015 Trang 192 0 0 0 0 u uj juit xp pi m m (9) Non-advection phase 1: 0 2 1 3 0 0 u S S fj ij ij jkkx jt p m (10) Non-advection phase 2: 1 2 0 ui xi p u j xit p uiCm xi (11) Instead of calculating 1n nf f (n is time step) directly from Equation (7), intermediate value of *f and **f are provided, and *nf f using Equation (9), * **f f using Equation (10), ** 1nf f using Equation (11) are calculated. After obtained components of velocity, density, pressure, function of density; spatial derivatives of these components, , f f x y , can be calculated. This procedure can be summarized as Table 1. Table 3. Procedure of separation solution Figure 4. Computational grid distributions Figure 5. Computational procedures TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K7- 2015 Trang 193 4. NUMERICAL SIMULATION 4.1. Problem Statement Two-dimensional water interacting with a solid body is considered in this section. The fluid is assumed to be incompressible and inviscid. Temperature variations are neglected. The problem is described in Figure 6. 2-phase problem is the first step, the base premise to write programs for 3-phase problem and absolutely no experimental verification` [5]. Figure 6. Two phases flow (initial frame) In which, U0 is inlet velocity. Computational domain is presented by two points P1 and P2. Obstacle is presented by two points P3 and P4, as shown in Figure 6. 4.2. Boundary Grid Structure Boundary grid structure is shown in Figure 7, 8 and 9. Figure 7. Boundary grid structure (left-bottom) nx nx+2 ny Figure 8. Boundary grid structure (right-top) Figure 9. Boundary grid structure (obstacle) SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K7- 2015 Trang 194 4.3. Boundary Conditions Inlet boundary condition: 2,3: 2 0u Uny 02,3: 2v ny Outlet boundary condition: 2nx 2,3: 2 nx 1,3: 2 nx,3: 2u u uny ny ny nx 3,3: 1 nx 2,3: 1v vny ny Bottom wall boundary condition: 2:nx 2,2 2:nx 2,3u u 02:nx 3,2v Top wall boundary condition: 2:nx 2,ny 3 2:nx 2,ny 2u u 02:nx 3,ny 2v Condition for obstacle 0Iob1:Iob2,Job1 1:Job2u Iob1 1,Job1 1:Job2 1 Iob1,Job1 1:Job2 1v v Iob2,Job1 1:Job2 1 Iob2 1,Job1 1:Job2 1v v 0Iob1 1:Iob2,Job1:Job2v Iob1 1:Iob2 1,Job1 1 Iob1 1:Iob2 1,Job1u u Iob1 1:Iob2 1,Job2 Iob1 1:Iob2 1,Job2 1u u 4.4. Boundary Condition for Poisson's Equation Inlet boundary condition: 2,3: 2 3,3: 2p pny ny Bottom wall boundary condition: 2: 2,2 2:nx 2,3p pnx Top wall boundary condition: 2: 2, 3 2:nx 2, 2p pnx ny ny 5. RESULTS The computing Matlab program was developed to perform this problem. In this program: Computational domain (m): P1(x1,y1) and P2(x2,y2). Obstacle position (m): P3(x3,y3) and P4(x4,y4). Coordinate of obstacle: P3(Iob1, Job1) and P4(Iob2, Job2). Number of mesh in two axis x, y are: nx and ny respectively. The size of a small grid is : h (h = x= y) . Time step : dt. Number of time step: nt Inlet velocity: U0. With: U0 =10 (m/s), dt=0.002 x1=0, y1=0, x2=0.02, y2=0.01, x3=0.45*x2, y3=0.1*y2; x4=0.6*x2, y4=0.65*y2; The velocity vector fields, u-velocity contour, v-velocity contour, pressure contour are presented in Fig. 10-13. TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K7- 2015 Trang 195 Figure 10. Velocity vector field (h=0.0002, nt=100) Figure 11. u-velocity contour (h=0.0002, nt=100) Figure 12. v-velocity contour (h=0.0002, nt=100) 6. CONCLUSIONS This paper presented an applicable method for simulating the wave body interaction problems. This method is cip (constrained interpolation profile). Throughout the research, we obtained some results as follows: from the physical phenomena, in particular here is the flow through an object in three phase environments (solid, liquid, gas). Then, we proceed to discretize these mathematical equations to create an algorithm and used computer to find the solution. This study uses matlab software as a tool for programming and presenting the results as graphs. This paper has built a solver for two dimensional flows in a two phase (liquid, solid) environment. These results can be used to develop a three phase flow (liquid, air, and solid) [5]. Due to limited on the basis of information technology, mathematical knowledge, and fluid dynamic, this paper stops at the simulation of two phases flow problems and much remains unresolved, specifically error analysis and validation by experimental results. In order to develop this work, it is necessary to analyze more simulations cases and invest more time. That is the future work. This method can be developed successfully to find the answer of three phase flow problem [6]. Acknowledgements: This work was supported by the research grant of AUN/SEED- Net (JICA) over a total period of 2 years for Collaborative Research with Industry (CRI) project (Project No. HCMUT-CRI-1501). Figure 13. Pressure contour (h=0.0002, nt=100) SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K7- 2015 Trang 196 Bài toán tương tác giữa sóng nước và kết cấu sử dụng phương pháp CIP-Bài toán minh hoạ tính cho hai pha. Trần Tiến Anh Bùi Quan Hùng Trường Đại học Bách Khoa, ĐHQG-HCM - ttienanh@yahoo.com TÓM TẮT Phương pháp CIP (Constrained Interpolation Profile) là một trong những phương pháp tính toán mô phỏng động lực học lưu chất (CFD) được phát triển bởi giáo sư người Nhật, Takashi Yabe. Nó được sử dụng để mô phỏng bài toán ba pha bao gồm không khí trên bề mặt, chất lỏng và kết cấu ở dạng rắn. Để kiểm tra tính chính xác của lý thuyết CIP, nhiều thí nghiệm với các bài toán khác nhau đã được thực hiện và thu được kết quả rất khả quan. Điều này chứng minh tính đúng đắn của phương pháp CIP. Căn cứ vào nhu cầu mô phỏng tương tác giữa sóng nước và kết cấu (sóng nước và phao của thủy phi cơ, thuyền bay, trụ bến tàu, giàn khoan, vỏ tàu ...), bài báo này áp dụng các lý thuyết của phương pháp CIP để tìm lời giải cho vấn đề của mô phỏng 2D của sóng nước qua một vật thể. Mục tiêu nghiên cứu là để hiểu biết rõ hơn về vật lý, tìm ra các phương trình vi phân mô tả hiện tượng này, sau đó tiến hành rời rạc hoá, thiết lập các thuật toán và tìm ra lời giải của phương trình. Bài viết này sử dụng phần mềm Matlab để viết các module chương trình và hiển thị kết quả. Từ khóa: giải thuật tính toán số, đường biên dạng nội suy, bài toán mặt thoáng, tương tác lưu chất và kết cấu, dòng nhiều pha, phương trình động lực học lưu chất. REFERENCES Takashi Yabe, Feng Xiao, Takayuki Utsumi (2001). The constrained interpolation profile method for multiphase analysis. Journal of Computational Physics 169, pp. 556–593. Kashiwaghi, M., Hu, C., Miyake, R. & Zhu. T. (2008). A CIP-based cartesian grid method for nonlinear wave-body interactions. Nippon Kaiji Kyokai. Washino, K., Tan, H. S., Salman, A.D. & Hounslow, M.J. (2011). Direct numerical simulation of solid–liquid–gas three-phase flow: Fluid–solid interaction. Powder Technology 206, pp. 161–169. Kishev, Z. R., Hu, C. & Kashiwagi, M. (2006). Numerical simulation of violent sloshing by a CIP-based method. Journal of Marine Science and Technology, Vol 11., pp. 111–122. Shiraishi, K. & Matsuoka, T. (2008). Wave propagation simulation using the CIP method of characteristic equations. Communications in Computational Physics, Vol. 3, pp. 121-135. Xiao, F. & Ikebata, A. (2003). An effcient method for capturing free boundaries in multi-fuid simulations. International Journal for Numerical Methods in Fluids, pp. 187–210.
File đính kèm:
- thiet_ke_va_lap_dat_he_thong_do_dao_dong_rung_trong_ham_gio.pdf